Step 1: Convert revolutions per minute to angular velocity in rad/s.
\[
n = 40~\text{rev/min} = \frac{40 \times 2\pi}{60} = \frac{4\pi}{3}~\text{rad/s}
\]
Step 2: Use centripetal force formula to calculate tension.
\[
T = mr\omega^2
\]
\[
m = 0.5~\text{kg},
r = 2~\text{m},
\omega = \frac{4\pi}{3}
\]
\[
T = 0.5 \times 2 \times \left(\frac{4\pi}{3}\right)^2 = 1 \times \frac{16\pi^2}{9} \approx 1 \times \frac{16 \times 9.87}{9} \approx 17.5~\text{N}
\]
% Final Answer
\[
\boxed{17.5~\text{N}}
\]