
Assume the radius of each small spherical ball be \(r\ cm\)
Volume of sphere = \(\frac{4}{3} \pi r^3\)
= \(8 × \frac{4}{3} \pi (r)^3 = \frac{4}{3} \pi (10)^3\)
\(r^3 = \frac{10^3}{8}\)
\(r = \frac{10}{2}\)
\(r = 5\ cm\)
Surface area of a sphere = \(4 \pi r^2\)
= \(4 × \pi × (5)^2\) = \(100 \pi\ cm^2\)
The correct option is (D): 100π cm2
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$
The radius of a circle with centre 'P' is 10 cm. If chord AB of the circle subtends a right angle at P, find area of minor sector by using the following activity. (\(\pi = 3.14\)) 
Activity : 
r = 10 cm, \(\theta\) = 90\(^\circ\), \(\pi\) = 3.14. 
A(P-AXB) = \(\frac{\theta}{360} \times \boxed{\phantom{\pi r^2}}\) = \(\frac{\boxed{\phantom{90}}}{360} \times 3.14 \times 10^2\) = \(\frac{1}{4} \times \boxed{\phantom{314}}\) <br>
A(P-AXB) = \(\boxed{\phantom{78.5}}\) sq. cm.