To solve the problem, we need to analyze the properties of the Poisson distribution. A random variable X follows a Poisson distribution with parameter λ, where the probability of X taking a value k is given by:
\(P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}\)
Given that \(3P(X=1)=P(X=2)\), we have:
\[3 \cdot \frac{e^{-\lambda} \lambda^1}{1!} = \frac{e^{-\lambda} \lambda^2}{2!}\]
Simplifying, we get:
\[3 \lambda = \frac{\lambda^2}{2}\]
Multiplying both sides by 2 to eliminate the fraction:
\[6 \lambda = \lambda^2\]
Rearranging gives:
\[\lambda^2 - 6 \lambda = 0\]
Factoring out λ:
\[\lambda(\lambda - 6) = 0\]
This implies \(\lambda = 0\) or \(\lambda = 6\). λ cannot be 0 in a Poisson distribution, so \(\lambda = 6\).
Now we need to find \(P(X=4)\):
\[P(X=4) = \frac{e^{-6} \cdot 6^4}{4!}\]
\[= \frac{e^{-6} \cdot 6^4}{24}\]
Calculating \(6^4\):
\[6^4 = 1296\]
Thus:
\[P(X=4) = \frac{1296 \cdot e^{-6}}{24}\]
\[= 54 e^{-6}\]
Therefore, the probability \(P(X=4)\) is \(54e^{-6}\).