Step 1: Write down the given expression for \(Q\)
\[
Q = \frac{I F V^2}{W L^3}
\]
Step 2: Identify the dimensions of each quantity
- Moment of inertia, \(I\): \([M L^2]\)
- Force, \(F\): \([M L T^{-2}]\)
- Velocity, \(V\): \([L T^{-1}]\)
- Work, \(W\): \([M L^2 T^{-2}]\)
- Length, \(L\): \([L]\)
Step 3: Find the dimension of numerator
\[
I F V^2 = [M L^2] \times [M L T^{-2}] \times [L T^{-1}]^2 = [M L^2] \times [M L T^{-2}] \times [L^2 T^{-2}]
\]
\[
= M \times M \times L^2 \times L \times L^2 \times T^{-2} \times T^{-2} = M^2 L^{5} T^{-4}
\]
Step 4: Find the dimension of denominator
\[
W L^3 = [M L^2 T^{-2}] \times [L^3] = M L^{5} T^{-2}
\]
Step 5: Find the dimension of \(Q\)
\[
Q = \frac{M^2 L^{5} T^{-4}}{M L^{5} T^{-2}} = M^{2-1} L^{5-5} T^{-4+2} = M^{1} L^{0} T^{-2}
\]
So, dimension of \(Q = [M T^{-2}]\).
Step 6: Identify the physical quantity with dimension \([M T^{-2}]\)
Surface tension has dimension of force per unit length:
\[
\text{Surface tension} = \frac{\text{Force}}{\text{Length}} = \frac{M L T^{-2}}{L} = M T^{-2}
\]
Step 7: Final Conclusion
Therefore, \(Q\) represents surface tension.