If a line in the space makes angles \(\alpha,\beta,\gamma\) with the coordinate axes, then
\[
\cos2\alpha+\cos2\beta+\cos2\gamma+\sin^2\alpha+\sin^2\beta+\sin^2\gamma
\]
equals
Show Hint
Always remember: direction cosines satisfy \(\cos^2\alpha+\cos^2\beta+\cos^2\gamma=1\). Convert the given expression into this form.
Step 1: Use identity \(\cos2\theta = 1-2\sin^2\theta\).
So:
\[
\cos2\alpha+\sin^2\alpha = (1-2\sin^2\alpha)+\sin^2\alpha=1-\sin^2\alpha=\cos^2\alpha
\]
Similarly:
\[
\cos2\beta+\sin^2\beta=\cos^2\beta
\]
\[
\cos2\gamma+\sin^2\gamma=\cos^2\gamma
\] Step 2: Add all three results.
\[
\cos^2\alpha+\cos^2\beta+\cos^2\gamma
\] Step 3: Use direction cosine identity.
For any line in space:
\[
\cos^2\alpha+\cos^2\beta+\cos^2\gamma=1
\] Final Answer:
\[
\boxed{1}
\]