We are given the matrix \( A = \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{pmatrix} \), and we need to find its inverse using elementary row transformations.
The inverse of a matrix \( A \) can be found by performing row operations on the augmented matrix \( [A | I] \), where \( I \) is the identity matrix.
Step 1: Write the augmented matrix:
\[
\left[ \begin{array}{ccc|ccc}
x & 0 & 0 & 1 & 0 & 0 \\
0 & y & 0 & 0 & 1 & 0 \\
0 & 0 & z & 0 & 0 & 1
\end{array} \right]
\]
Step 2: Perform row operations to make the diagonal elements equal to 1. We will scale each row by the reciprocal of the corresponding diagonal element.
- Row 1: Divide by \( x \), Row 2: Divide by \( y \), Row 3: Divide by \( z \).
The result will be:
\[
\left[ \begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{1}{x} & 0 & 0 \\
0 & 1 & 0 & 0 & \frac{1}{y} & 0 \\
0 & 0 & 1 & 0 & 0 & \frac{1}{z}
\end{array} \right]
\]
Step 3: The right-hand side is the inverse matrix:
\[
A^{-1} = \begin{pmatrix}
\frac{1}{x} & 0 & 0 \\
0 & \frac{1}{y} & 0 \\
0 & 0 & \frac{1}{z}
\end{pmatrix}
\]