Question:

If \(\vec a\),\(\vec b\),\(\vec c\)are mutually perpendicular to equal magnitudes, showing that the vector \(\vec a\)+\(\vec b\)+\(\vec c\)is equally inclined to \(\vec a\),\(\vec b\),and \(\vec c\).

Updated On: Sep 19, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Since,\(\vec a\),\(\vec b\),and \(\vec c\) are mutually perpendicular vectors,we have
\(\vec a\).\(\vec b\)=\(\vec b\).\(\vec c\)=\(\vec c\).\(\vec a\)=0.
It is given that:
|\(\vec a\)|=|\(\vec b\)|=|\(\vec c\)|
Let vector \(\vec a\)+\(\vec b\)+\(\vec c\)be inclined to \(\vec a\),\(\vec b\)and \(\vec c\) at angles θ12,and θ3 respectively.
Then,we have:
cosθ=(\(\vec a+\vec b+\vec c\)).\(\vec a\)/|\(\vec a+\vec b+\vec c\)||\(\vec a\)|=\(\vec a\).\(\vec a+\vec b\).\(\vec a+\vec c\).\(\vec a\)/|\(\vec a+\vec b+\vec c\)||\(\vec a\)|
=\(\frac{|\vec a|}{|\vec a+\vec b+\vec c|}\)|\(\vec a\)| [\(\vec a.\vec b\)=\(\vec a.\vec c\)=0]
=\(\frac{|\vec a|}{|\vec a+\vec b+\vec c|}\)
cosθ2=(\(\vec a+\vec b+\vec c\)).\(\vec b\)/|\(\vec a+\vec b+\vec c\)||\(\vec b\)|=\(\frac{\vec a.\vec b+\vec b.\vec b+\vec c.\vec b}{|\vec a+\vec b+\vec c|.|\vec b|}\)
=\(\frac{|\vec b|^2}{\vec a+\vec b+\vec c}.|\vec b|[\vec a.\vec b=\vec c.\vec b=0]\)
=\(\frac{|\vec b|}{|\vec a+\vec b+\vec c|}\)
cosθ3=(\(\vec a+\vec b+\vec c\)).\(\vec c\)/|\(\vec a+\vec b+\vec c\)||\(\vec c\)|=\(\vec a.\vec c\)+\(\vec b.\vec c\)+\(\vec c.\vec c\)/|\(\vec a+\vec b+\vec c\)||\(\vec c\)|
=|\(\vec c\)|2/|\(\vec a+\vec b+\vec c\)||\(\vec c\)| [\(\vec a\).\(\vec c\)=\(\vec b\).\(\vec c\)=0]
=\(\frac{|\vec c|}{|\vec a+\vec b+\vec c|}\)
Now,as |\(\vec a\)||\(\vec b\)|=|\(\vec c\)|,cosθ1=cosθ2=cosθ3.
∴θ1=θ2=θ3
Hence,(\(\vec a+\vec b+\vec c\))is equally inclined to \(\vec a\),\(\vec b\),and \(\vec c\).

Was this answer helpful?
0
0

Concepts Used:

Vector Algebra

A vector is an object which has both magnitudes and direction. It is usually represented by an arrow which shows the direction(→) and its length shows the magnitude. The arrow which indicates the vector has an arrowhead and its opposite end is the tail. It is denoted as

The magnitude of the vector is represented as |V|. Two vectors are said to be equal if they have equal magnitudes and equal direction.

Vector Algebra Operations:

Arithmetic operations such as addition, subtraction, multiplication on vectors. However, in the case of multiplication, vectors have two terminologies, such as dot product and cross product.