Let us assume:
\[
a + b = 6x,\quad b + c = 7x,\quad c + a = 8x
\]
Now, add all three equations:
\[
(a + b) + (b + c) + (c + a) = 6x + 7x + 8x = 21x
\Rightarrow 2(a + b + c) = 21x
\Rightarrow a + b + c = \frac{21x}{2}
\]
But it is given that:
\[
a + b + c = 14
\Rightarrow \frac{21x}{2} = 14
\Rightarrow x = \frac{28}{21} = \frac{4}{3}
\]
Now use \( x = \frac{4}{3} \) to find \( a \):
We know:
\[
a + b = 6x = 6 \times \frac{4}{3} = 8
b + c = 7x = \frac{28}{3} \Rightarrow c = \frac{28}{3} - b
c + a = 8x = \frac{32}{3} \Rightarrow a = \frac{32}{3} - c
\]
Substitute \( c = \frac{28}{3} - b \) into equation for \( a \):
\[
a = \frac{32}{3} - \left( \frac{28}{3} - b \right)
= \frac{32}{3} - \frac{28}{3} + b = \frac{4}{3} + b
\]
Now, from \( a + b = 8 \), substitute \( a = \frac{4}{3} + b \):
\[
\frac{4}{3} + b + b = 8 \Rightarrow \frac{4}{3} + 2b = 8
\Rightarrow 2b = 8 - \frac{4}{3} = \frac{20}{3} \Rightarrow b = \frac{10}{3}
\Rightarrow a = \frac{4}{3} + \frac{10}{3} = \frac{14}{3}
\]