Step 1: Identify the Centres and Radii of the Given Circles The given circles are: \[ x^2 + y^2 - 14x + 6y + 33 = 0 \] \[ x^2 + y^2 + 30x - 2y + 1 = 0 \] Step 2: Complete the Square For the first circle: \[ x^2 - 14x + y^2 + 6y + 33 = 0 \] Completing the square: \[ (x - 7)^2 - 49 + (y + 3)^2 - 9 + 33 = 0 \] \[ (x - 7)^2 + (y + 3)^2 - 25 = 0 \] \[ (x - 7)^2 + (y + 3)^2 = 25 \] Thus, the center is \( (7, -3) \) and radius \( R_1 = 5 \). For the second circle: \[ x^2 + 30x + y^2 - 2y + 1 = 0 \] Completing the square: \[ (x + 15)^2 - 225 + (y - 1)^2 - 1 + 1 = 0 \] \[ (x + 15)^2 + (y - 1)^2 = 225 \] Thus, the center is \( (-15, 1) \) and radius \( R_2 = 15 \). Step 3: Centres of Similitude The centres of similitude are given by the section formula: \[ \mathbf{C_1} = \frac{R_2 \mathbf{O_1} + R_1 \mathbf{O_2}}{R_2 + R_1} \] \[ \mathbf{C_2} = \frac{R_2 \mathbf{O_1} - R_1 \mathbf{O_2}}{R_2 - R_1} \] Using the first formula: \[ \mathbf{C_1} = \frac{15(7, -3) + 5(-15, 1)}{15 + 5} \] \[ \mathbf{C_1} = \frac{(105, -45) + (-75, 5)}{20} \] \[ \mathbf{C_1} = \frac{(30, -40)}{20} = (1.5, -2) \] Using the second formula: \[ \mathbf{C_2} = \frac{15(7, -3) - 5(-15, 1)}{15 - 5} \] \[ \mathbf{C_2} = \frac{(105, -45) + (75, -5)}{10} \] \[ \mathbf{C_2} = \frac{(180, -50)}{10} = (18, -5) \] Step 4: Midpoint of \( AB \) The midpoint of \( AB \) is: \[ \text{Midpoint} = \left( \frac{1.5 + 18}{2}, \frac{-2 + (-5)}{2} \right) \] \[ = \left( \frac{19.5}{2}, \frac{-7}{2} \right) \] \[ = \left( \frac{39}{4}, \frac{-7}{2} \right) \] Step 5: Final Answer
\[Correct Answer: (4) \ \left( \frac{39}{4}, \frac{-7}{2} \right)\]Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?