Step 1: The given matrix is \[ A=2I_4 \] Hence, \[ \det(A)=2^4=16 \]
Step 2: For an \(n\times n\) matrix, \[ \det(\operatorname{adj}A)=(\det A)^{\,n-1} \] Here \(n=4\), so \[ \det(\operatorname{adj}A)=16^3=4096 \]
Step 3: Again applying the same property: \[ \det(\operatorname{adj}(\operatorname{adj}A)) =\left(\det(\operatorname{adj}A)\right)^{3} =4096^3 \] Since \(4096=2^{12}\), \[ \det(\operatorname{adj}(\operatorname{adj}A))=2^{36} \]
Step 4: Evaluate the fractional part: \[ \left\{\frac{2^{36}}{7}\right\} \] Using modulo arithmetic: \[ 2^3=8\equiv 1 \pmod{7} \] \[ 2^{36}=(2^3)^{12}\equiv 1^{12}\equiv 1 \pmod{7} \] So, \[ \frac{2^{36}}{7}=\text{integer}+\frac{1}{7} \]
Step 5: Hence, the fractional part is: \[ \boxed{\frac{1}{7}} \]
Let A = \(\begin{bmatrix} \log_5 128 & \log_4 5 \log_5 8 & \log_4 25 \end{bmatrix}\) \). If \(A_{ij}\) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^2 a_{ik} A_{jk} \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to:
Sum of the positive roots of the equation: \[ \begin{vmatrix} x^2 + 2x + 2 & x + 2 & 1 \\ 2x + 1 & x - 1 & 1 \\ x + 2 & -1 & 1 \end{vmatrix} = is \; 0. \]
If \( a \neq b \neq c \), then
\[ \Delta_1 = \begin{vmatrix} 1 & a^2 & bc \\ 1 & b^2 & ca \\ 1 & c^2 & ab \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} \]and
\[ \frac{\Delta_1}{\Delta_2} = \frac{6}{11} \]then what is \( 11(a + b + c) \)?
\[ \textbf{If } | \text{Adj} \ A | = x \text{ and } | \text{Adj} \ B | = y, \text{ then } \left( | \text{Adj}(AB) | \right)^{-1} \text{ is } \]
Choose the correct option to fill in the blank: She is good ………….. mathematics.
What is the simple interest on ₹2000 at 5% per annum for 2 years?
If the cost price of an article is ₹500 and it is sold at a profit of 10%, what is the selling price?