We are given the equation:
\[
16% \times 250 + 115% \times 480 = 10% \times N.
\]
Simplifying the left side:
\[
16% \times 250 = \frac{16}{100} \times 250 = 40, \quad 115% \times 480 = \frac{115}{100} \times 480 = 552.
\]
Thus, the equation becomes:
\[
40 + 552 = 10% \times N \quad \Rightarrow \quad 592 = 10% \times N.
\]
So,
\[
10% \times N = 592 \quad \Rightarrow \quad N = \frac{592}{0.10} = 5920.
\]
Thus, the value of \( N \) is 5920, which corresponds to option (3).