Question:

How many ten-digit numbers can be formed using all the digits of 2435753228 such that odd digits appear only in even places?

Updated On: Dec 30, 2025
  • 2! 3! 5!
  • $(5!)^2$
  • $\frac{(5!)^2}{3!}$
  • $\frac{(5!)^2}{3!(2!)^2}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

To solve the problem of how many ten-digit numbers can be formed using all the digits of \(2435753228\) with the restriction that odd digits appear only in even places, we follow these steps: 

  1. Identify the individual digits and their frequency from the number \(2435753228\):
    • Odd digits: \(3, 5, 7\)
    • Even digits: \(2, 4, 8\)
  2. Count the frequency of each digit:
    • Odd digits: \(3(2), 5(2), 7(1)\) – Total: 5 odd digits
    • Even digits: \(2(3), 4(1), 8(1)\) – Total: 5 even digits
  3. Determine the positions for the odd and even digits:
    • Odd digits can occupy even places in a ten-digit number, resulting in positions: 2, 4, 6, 8, 10.
    • Even digits can occupy the remaining positions: 1, 3, 5, 7, 9.
  4. Calculate ways to arrange odd digits:
    • We must arrange 5 odd digits \((3, 5, 5, 7)\) in 5 positions. There are duplicates (two '3's and two '5's).
    • Permutation formula considering repetition: \(\frac{5!}{2! \cdot 2!}\).
  5. Calculate ways to arrange even digits:
    • Arrange 5 even digits \((2, 2, 2, 4, 8)\) in 5 positions. There are three '2's.
    • Permutation formula considering repetition: \(\frac{5!}{3!}\).
  6. Total number of ten-digit numbers is the product of the permutations for odd and even digits:
    • Mathematically, this is: \(N = \frac{5!}{2! \cdot 2!} \times \frac{5!}{3!}\)
  7. Simplify the calculation:
    • \(\left( \frac{5! \cdot 5!}{3! \cdot 2! \cdot 2!} \right)\)\(120 \times 10\)= 1200

The correct answer using the mathematical approach is: \(\frac{(5!)^2}{3!(2!)^2}\)

This corresponds to the option: $\frac{(5!)^2}{3!(2!)^2}$.

Was this answer helpful?
0
0