Step 1: Understanding the Concept:
When an object is melted and recast into other objects, the total volume of the material remains constant. Therefore, the volume of the original sphere will be equal to the total volume of all the cylinders made from it.
Step 2: Key Formula or Approach:
1. Volume of a sphere = \( \frac{4}{3}\pi R^3 \), where R is the radius of the sphere.
2. Volume of a cylinder = \( \pi r^2 h \), where r is the radius and h is the height of the cylinder.
Let 'n' be the number of cylinders formed. Then,
\[ \text{Volume of Sphere} = n \times \text{Volume of one Cylinder} \]
Step 3: Detailed Explanation:
Given for the sphere:
Radius, R = 30 cm.
Given for the cylinder:
Radius, r = 10 cm.
Height, h = 6 cm.
Let 'n' be the number of cylinders that can be made.
Setting the volumes equal:
\[ \frac{4}{3}\pi R^3 = n \times (\pi r^2 h) \]
We can cancel \(\pi\) from both sides:
\[ \frac{4}{3} R^3 = n \times r^2 h \]
Substitute the given values:
\[ \frac{4}{3} (30)^3 = n \times (10)^2 (6) \]
\[ \frac{4}{3} \times (30 \times 30 \times 30) = n \times (100 \times 6) \]
\[ 4 \times 10 \times 30 \times 30 = n \times 600 \]
\[ 36000 = 600n \]
Now, solve for n:
\[ n = \frac{36000}{600} \]
\[ n = \frac{360}{6} = 60 \]
Step 4: Final Answer:
The number of solid cylinders that can be made is 60.
The radius of a circle with centre 'P' is 10 cm. If chord AB of the circle subtends a right angle at P, find area of minor sector by using the following activity. (\(\pi = 3.14\))
Activity :
r = 10 cm, \(\theta\) = 90\(^\circ\), \(\pi\) = 3.14.
A(P-AXB) = \(\frac{\theta}{360} \times \boxed{\phantom{\pi r^2}}\) = \(\frac{\boxed{\phantom{90}}}{360} \times 3.14 \times 10^2\) = \(\frac{1}{4} \times \boxed{\phantom{314}}\) <br>
A(P-AXB) = \(\boxed{\phantom{78.5}}\) sq. cm.
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$
рд╕рд░рд╕реНрд╡рддреА рд╡рд┐рджреНрдпрд╛рд▓рдп, рдХреЛрд▓реНрд╣рд╛рдкреБрд░ рдореЗрдВ рдордирд╛рдП рдЧрдП 'рд╢рд┐рдХреНрд╖рдХ рджрд┐рд╡рд╕' рд╕рдорд╛рд░реЛрд╣ рдХрд╛ 70 рд╕реЗ 80 рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╡реГрддреНрддрд╛рдВрдд рд▓реЗрдЦрди рдХреАрдЬрд┐рдПред
(рд╡реГрддреНрддрд╛рдВрдд рдореЗрдВ рд╕реНрдерд▓, рдХрд╛рд▓, рдШрдЯрдирд╛ рдХрд╛ рдЙрд▓реНрд▓реЗрдЦ рд╣реЛрдирд╛ рдЕрдирд┐рд╡рд╛рд░реНрдп рд╣реИ)
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдЬрд╛рдирдХрд╛рд░реА рдХреЗ рдЖрдзрд╛рд░ рдкрд░ 50 рд╕реЗ 60 рд╢рдмреНрджреЛрдВ рдореЗрдВ рд╡рд┐рдЬреНрдЮрд╛рдкрди рддреИрдпрд╛рд░ рдХреАрдЬрд┐рдП :