The correct answer is: \(= 73.43 kPa\)
Vapour pressure of heptane\((p^0_1)= 105.2KPa\)
Vapour pressure of octane\(= 46.8 kPa\)
We know that,
Molar mass of heptane \((C_7H_{16}) = 7\times12 + 16 \times 1\)
\(= 100 g mol ^{- 1}\)
Number of moles of heptane \(= \frac{26}{100} mol\)
\(= 0.26 mol\)
Molar mass of octane \((C_8H_{18}) = 8\times12 + 18 \times 1 \)
\(= 114 g mol^{- 1}\)
Number of moles of octane\(=\frac{35}{114} mol\)
\(= 0.31 mol\)
Mole fraction of heptane, \(x_1 = \frac{0.26}{(0.26+0.31)}\)
\(= 0.456 \)
And, mole fraction of octane, \(x_2 = 1 - 0.456 \)
\(= 0.544\)
Now, partial pressure of heptane, \(p_1 = x_1p^0_1\)
\(= 0.456\times105.2 = 47.97 kPa\)
Partial pressure of octane, \(p_2 = x_2p^0_2\)
\(= 0.544\times46.8 = 25.46 kPa\)
Hence, vapour pressure of solution, \(p_{total} = p_1 + p_2 \)
\(= 47.97 + 25.46 \)
\(= 73.43 kPa\)