\(\text{Length (in mm)}\) | 70-80 | 80-90 | 90-100 | 100-110 | 110-120 | 120-130 | 130-140 |
---|---|---|---|---|---|---|---|
\(\text{Number of leaves}\) | 3 | 5 | 9 | 12 | 5 | 4 | 2 |
Step 1: Understanding the given data:
We are given a frequency distribution table with the following details:
The class intervals represent the length of leaves in mm, the frequency indicates the number of leaves in each class, and the cumulative frequency (CF) represents the total number of leaves up to that class.
The table is as follows:
\(\text{Length (in mm)}\) | \(\text{Number of Leaves}\) | \(\text{Cumulative Frequency (CF)}\) |
---|---|---|
70 – 80 | 3 | 3 |
80 – 90 | 5 | 8 |
90 – 100 | 9 | 17 |
100 – 110 | 12 | 29 |
110 – 120 | 5 | 34 |
120 – 130 | 4 | 38 |
130 – 140 | 2 | 40 |
Step 2: Determining the median class:
The total number of leaves is given as 40. The median class is the class where the median value lies.
To find the median class, we first calculate the position of the median using the formula:
\[ \text{Median Position} = \frac{N}{2} \] where \( N \) is the total number of leaves. Here, \( N = 40 \), so the median position is:
\[ \frac{40}{2} = 20 \] This means the median value lies at the 20th position in the cumulative frequency table.
Step 3: Identifying the median class:
From the cumulative frequency column in the table, we can observe the following:
- The cumulative frequency for the class 70–80 is 3 (less than 20).
- The cumulative frequency for the class 80–90 is 8 (less than 20).
- The cumulative frequency for the class 90–100 is 17 (less than 20).
- The cumulative frequency for the class 100–110 is 29 (greater than 20).
Therefore, the 20th leaf lies in the class interval **100–110**.
Step 4: Conclusion:
Thus, the median class is 100–110.
Step 1: Understanding the given data:
We are asked to find the number of leaves with a length equal to or more than 10 cm (100 mm).Step 2: Identifying the relevant classes:
From the frequency distribution table, the classes with leaves of length 100 mm or more are:Step 3: Calculating the total number of leaves:
To find the total number of leaves with a length equal to or more than 100 mm, we add the frequencies of the relevant classes:Step 4: Conclusion:
Thus, there are 23 leaves of length equal to or more than 10 cm (100 mm).(a) To find the median, use the formula for grouped data:
\[ \text{Median} = L + \left( \frac{\frac{N}{2} - F}{f} \right) \times h \]
Where:
\[ \text{Median} = 100 + \left( \frac{20 - 17}{12} \right) \times 10 = 100 + 2.5 = 102.5 \, \text{mm} \]
Thus, the Median is \( 102.5 \, \text{mm} \).
(b) The modal class is the class with the highest frequency, which is 100-110 with 12 leaves. To find the mode, use the formula:
\[ \text{Mode} = L + \left( \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right) \times h \]
Where:
\[ \text{Mode} = 100 + \left( \frac{12 - 9}{2 \times 12 - 9 - 5} \right) \times 10 = 100 + \left( \frac{3}{10} \right) \times 10 = 100 + 3 = 103 \, \text{mm} \]
Thus, the Mode is \( 103 \, \text{mm} \).
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
Variance of the following discrete frequency distribution is:
\[ \begin{array}{|c|c|c|c|c|c|} \hline \text{Class Interval} & 0-2 & 2-4 & 4-6 & 6-8 & 8-10 \\ \hline \text{Frequency (}f_i\text{)} & 2 & 3 & 5 & 3 & 2 \\ \hline \end{array} \]
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
"जितेंद्र नार्गे जैसे गाइड के साथ किसी भी पर्यटन स्थल का भ्रमण अधिक आनंददायक और यादगार हो सकता है।" इस कथन के समर्थन में 'साना साना हाथ जोड़ि .......' पाठ के आधार पर तर्कसंगत उत्तर दीजिए।