Given the matrix \( A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \), find \( A^8 \).
Step 1: Finding the eigenvalues and eigenvectors of matrix \( A \).
The matrix \( A \) is:
\[ A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \]The characteristic equation of \( A \) is given by:
\[ \det(A - \lambda I) = 0 \] \[ \begin{vmatrix} 1 - \lambda & 2 \\ 2 & -1 - \lambda \end{vmatrix} = 0 \] \[ (1 - \lambda)(-1 - \lambda) - 4 = 0 \] \[ \lambda^2 - 2 = 0 \quad \Rightarrow \quad \lambda = \pm \sqrt{2} \]Step 2: Using the properties of eigenvalues.
For a matrix \( A \) with eigenvalues \( \lambda_1 \) and \( \lambda_2 \), the powers of \( A \) can be expressed in terms of its eigenvalues as:
\[ A^n = P \begin{bmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{bmatrix} P^{-1} \]Since \( \lambda_1 = \sqrt{2} \) and \( \lambda_2 = -\sqrt{2} \), we have:
\[ A^8 = P \begin{bmatrix} (\sqrt{2})^8 & 0 \\ 0 & (-\sqrt{2})^8 \end{bmatrix} P^{-1} = P \begin{bmatrix} 256 & 0 \\ 0 & 256 \end{bmatrix} P^{-1} \] \[ A^8 = 256I \]Thus, the correct answer is \( 256I \).
Given an array \( A[n] \) such that:
\[ A[0] \to A[i] \text{ is in non-decreasing order}, \quad A[i+1] \to A[n] \text{ is in non-increasing order}. \]Find the time complexity to find \( A[i] \).
Consider the following code:
int a; int arr[] = {30, 50, 10}; int *ptr = arr[10] + 1; a = *ptr; (*ptr)++; ptr = ptr + 1; printf("%d", a + arr[1] + *ptr);
What is the output of the following C code?
void foo(int *p, int x) { *p = x; } void main() { int *z; int a = 20, b = 25; z = a; // Incorrect: Should be z = a; foo(z, b); printf("%d", a); }
Issue: The statement z = a;
is invalid because a
is an integer, and z
is a pointer.
Find the signed binary expansion of the number -6.
Which of the following is the greatest? \[ 0.6, \ 0.666, \ \frac{5}{6}, \ \frac{2}{3} \]
Match the following layers with their corresponding functionalities:
\[ \begin{array}{|c|c|} \hline \textbf{Layer} & \textbf{Functionality} \\ \hline \text{Networking Layer} & \text{Data packet transfer} \\ \text{Transport Layer} & \text{Host-to-host communication} \\ \text{Data Link Layer} & \text{Error detection and correction} \\ \hline \end{array} \]