Question:

Given the following Lists:
List-IList-II
a. BCD codeiv. Code used to represent decimal digits in binary form
b. EBCDICi. Code used for encoding characters in IBM mainframe systems
c. ASCIIii. Codes widely used for character encoding standard for electronic communication
d. Unicodeiii. Universal character encoding standard that can represent virtually all written languages
Identify the correct match.

Show Hint

Note the non-standard definitions for EBCDIC and Unicode based on the provided answer.
  • a-iii; b-iv; c-i; d-ii
  • a-iv; b-i; c-ii; d-iii
  • a-iv; b-iii; c-ii; d-i
  • a-i; b-ii; c-iii; d-iv
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Matching List-I and List-II through Base Conversions

a. Convert 101012 to Decimal

\( 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 16 + 0 + 4 + 0 + 1 = 21_{10} \)

Match: a → iii

b. Convert DAD16 to Octal

In hexadecimal: A = 10, D = 13
\( DAD_{16} = 13 \cdot 16^2 + 10 \cdot 16^1 + 13 \cdot 16^0 = 3328 + 160 + 13 = 3501_{10} \)

Now convert 350110 to octal:

  • 3501 ÷ 8 = 437 remainder 5
  • 437 ÷ 8 = 54 remainder 5
  • 54 ÷ 8 = 6 remainder 6
  • 6 ÷ 8 = 0 remainder 6

Reading from bottom to top: 66558

Match: b → i

c. One’s Complement of 11012

Invert each bit: 1101 → 0010
One’s Complement: 00102

Match: c → iv

d. Convert 4018 to Hexadecimal

\( 4 \cdot 8^2 + 0 \cdot 8^1 + 1 \cdot 8^0 = 256 + 0 + 1 = 257_{10} \)

Now convert 25710 to hexadecimal:

  • 257 ÷ 16 = 16 remainder 1
  • 16 ÷ 16 = 1 remainder 0
  • 1 ÷ 16 = 0 remainder 1

Reading from bottom to top: 10116

Match: d → ii

Final Matching Summary

  • a → iii
  • b → i
  • c → iv
  • d → ii

This corresponds to option (3).

Quick Tip: Always convert all values to a common base (usually decimal) before comparing or matching. Use one’s complement by inverting binary digits.

Was this answer helpful?
0
0