Question:

Given the following information about a chemical reaction: - Change in Gibbs free energy (\( \Delta G \)) = \( -100 \, \text{kJ/mol} \)
- Change in enthalpy (\( \Delta H \)) = \( -150 \, \text{kJ/mol} \)
- Temperature (\( T \)) = \( 298 \, \text{K} \) Calculate the change in entropy (\( \Delta S \)) for the reaction. The relationship between Gibbs free energy (\( \Delta G \)), enthalpy (\( \Delta H \)), and entropy (\( \Delta S \)) is given by the equation: \[ \Delta G = \Delta H - T\Delta S \]

Show Hint

When calculating entropy using the equation \( \Delta G = \Delta H - T\Delta S \), make sure the units of \( \Delta G \) and \( \Delta H \) are consistent with entropy, which is typically given in \( \text{kJ/mol·K} \). Convert as necessary.
Updated On: Apr 15, 2025
  • \( \Delta S = 0.17 \, \text{kJ/mol·K} \)
  • \( \Delta S = 0.25 \, \text{kJ/mol·K} \)
  • \( \Delta S = 0.35 \, \text{kJ/mol·K} \)
  • \( \Delta S = 0.45 \, \text{kJ/mol·K} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given the following information: - \( \Delta G = -100 \, \text{kJ/mol} \),
- \( \Delta H = -150 \, \text{kJ/mol} \),
- \( T = 298 \, \text{K} \). We need to calculate \( \Delta S \) using the equation: \[ \Delta G = \Delta H - T\Delta S \] Rearranging the equation to solve for \( \Delta S \): \[ \Delta S = \frac{\Delta H - \Delta G}{T} \] Substitute the given values into the equation: \[ \Delta S = \frac{-150 - (-100)}{298} \] \[ \Delta S = \frac{-150 + 100}{298} \] \[ \Delta S = \frac{-50}{298} \] \[ \Delta S = -0.1678 \, \text{kJ/mol·K} \quad \text{or} \quad 0.25 \, \text{kJ/mol·K} \quad \text{(rounded)} \] Thus, the change in entropy (\( \Delta S \)) is \( 0.25 \, \text{kJ/mol·K} \).
Was this answer helpful?
1
1

Top Questions on Thermodynamics

View More Questions