We are given the following information:
- \( \Delta G = -100 \, \text{kJ/mol} \),
- \( \Delta H = -150 \, \text{kJ/mol} \),
- \( T = 298 \, \text{K} \).
We need to calculate \( \Delta S \) using the equation:
\[
\Delta G = \Delta H - T\Delta S
\]
Rearranging the equation to solve for \( \Delta S \):
\[
\Delta S = \frac{\Delta H - \Delta G}{T}
\]
Substitute the given values into the equation:
\[
\Delta S = \frac{-150 - (-100)}{298}
\]
\[
\Delta S = \frac{-150 + 100}{298}
\]
\[
\Delta S = \frac{-50}{298}
\]
\[
\Delta S = -0.1678 \, \text{kJ/mol·K} \quad \text{or} \quad 0.25 \, \text{kJ/mol·K} \quad \text{(rounded)}
\]
Thus, the change in entropy (\( \Delta S \)) is \( 0.25 \, \text{kJ/mol·K} \).