Let A=[111131−2−3−3],b=[b1b2b3]. A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ -2 & -3 & -3 \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}. A=11−213−311−3,b=b1b2b3. For Ax=b Ax = b Ax=b to be solvable, which one of the following options is the correct condition on b1,b2, b_1, b_2, b1,b2, and b3 b_3 b3?