$P\left(x\right)=x^{4}+ax^{3}+bx^{2}+cx+d$
$P'\left(x\right) = 4x^{3} + 3ax^{2} + 2bx + c$
$\because x = 0$ is a solution for $P'\left(x\right) = 0 , ? c = 0$
$\therefore P\left(x\right)=x^{4}+ax^{3}+bx^{2}+cx+d\,...\left(1\right)$
Also, we have $P\left(-1\right) < P\left(1\right)$
$?1- a + b + d < 1+ a + b + d? a >0$
$Q P'\left(x\right) = 0$ , only when $x = 0$ and $P\left(x\right)$ is differentiable in $\left( - 1, 1\right)$, we should have the maximum and minimum at the points $x = - 1, 0$ and $1$ only
Also, we have $P\left(-1\right) < P\left(1\right)$
$? Max. of P\left(x\right) = Max. P\left(0\right), P\left(1\right) \& Min. of P\left(x\right) = Min. \left\{P\left(-1\right), P\left(0\right)\right\}$ In the interval $\left[ 0 , 1 \right],$
$P'\left(x\right) = 4x^{3} + 3ax^{2} + 2bx = x\left(4x^{2} + 3ax + 2b\right)$
$\because P'\left(x\right)$ has only one root $x = 0, 4x^{2} + 3ax + 2b = 0$ has no real roots
$\therefore \left(3a\right)^{2}-2ab < 0 \Rightarrow \frac{3a^{2}}{32} < b$
$\therefore b < 0$
Thus, we have $a > 0$ and $b > 0$
$? P'\left(x\right) = 4x^{3} + 3ax^{2} + 2bx > 0, ?x ?\left(0, 1\right)$
Hence $P\left(x\right)$ is increasing in $\left[ 0, 1 \right]$
$?$ Max. of $P\left(x\right) = P\left(1\right)$
Similarly, $P(x)$ is decreasing in $[-1 , 0]$
Therefore Min. P(x) does not occur at $x = - 1$