Step 1: Infer the rule from the example.
At each step, the alphabetically smallest remaining word is placed at the extreme left, and the largest remaining number is placed at the extreme right. Repeating this gives all words first (ascending), then numbers (descending).
Step 2: Order words and numbers for the new input.
Words (alphabetical): $cb, eb, gb, jb, kb, nb$.
Numbers (descending): $82, 69, 58, 49, 38, 23$.
Step 3: Build the steps up to Step 4.
\[
\begin{aligned}
\text{Step 1: }& cb\; kb\; eb\; 58\; 49\; 23\; 38\; jb\; nb\; gb\; 69\; 82
\text{Step 2: }& cb\; eb\; kb\; 58\; 49\; 23\; 38\; jb\; nb\; gb\; 69\; 82
\text{Step 3: }& cb\; eb\; gb\; kb\; 49\; 23\; 38\; jb\; nb\; 82\; 69\; 58
\text{Step 4: }& cb\; eb\; gb\; jb\; kb\; 23\; 38\; nb\; 82\; 69\; 58\; 49
\end{aligned}
\]
Step 4: Locate $58$ in Step 4.
In Step 4 the tail is $82, 69, 58, 49$ (left to right). Hence $58$ is third from the right. \[
\boxed{\text{Third from the right}}
\]