Step 1: Identify given values.
\[
L = 20 \, \text{mH} = 20 \times 10^{-3} \, H, \quad
C = 2 \, \mu F = 2 \times 10^{-6} \, F, \quad
R = 1000 \, \Omega.
\]
Step 2: Inductive reactance.
\[
X_L = 2 \pi f L.
\]
Step 3: Capacitive reactance.
\[
X_C = \frac{1}{2 \pi f C}.
\]
Step 4: Resonance condition.
At resonance, $X_L = X_C$. So,
\[
2 \pi f L = \frac{1}{2 \pi f C}.
\]
\[
f^2 = \frac{1}{(2 \pi)^2 L C}.
\]
\[
f = \frac{1}{2 \pi \sqrt{LC}}.
\]
Step 5: Substitution.
\[
f = \frac{1}{2 \pi \sqrt{20 \times 10^{-3} \times 2 \times 10^{-6}}}.
\]
\[
f = \frac{1}{2 \pi \sqrt{40 \times 10^{-9}}}.
\]
\[
f = \frac{1}{2 \pi \times 2 \times 10^{-4.5}} \approx 1000 \, \text{Hz}.
\]
Step 6: Reactances at resonance.
\[
X_L = 2 \pi f L = 2 \pi (1000)(20 \times 10^{-3}) = 125.6 \, \Omega.
\]
\[
X_C = \frac{1}{2 \pi f C} = \frac{1}{2 \pi (1000)(2 \times 10^{-6})} = 125.6 \, \Omega.
\]
Step 7: Impedance at resonance.
At resonance, $X_L = X_C$, so impedance is purely resistive:
\[
Z = R = 1000 \, \Omega.
\]
Step 8: Conclusion.
(A) $X_L = 125.6 \, \Omega$, $X_C = 125.6 \, \Omega$
(B) $f = 1000 \, \text{Hz}$
(C) $Z = 1000 \, \Omega$