Step 1: Analyze the charge configuration.
The given system has four charges:
\[
(+q \text{ at } +a \text{ on x-axis}), \quad (-q \text{ at } -a \text{ on x-axis}),
\]
\[
(+q \text{ at } +a \text{ on y-axis}), \quad (-q \text{ at } -a \text{ on y-axis}).
\]
The total charge is zero, so monopole contribution vanishes. The next term (dipole term) dominates at large distances.
Step 2: Calculate the net dipole moment.
Each pair contributes a dipole moment of magnitude \( 2qa \).
The resultant dipole moment is along the bisector between x and y axes, at \( 45^\circ \), with magnitude
\[
p = \sqrt{(2qa)^2 + (2qa)^2} = 2\sqrt{2}qa.
\]
Step 3: Potential due to dipole.
Potential at a point \( P \) far away (at an angle \( \theta \) from dipole axis):
\[
V = \frac{1}{4\pi\varepsilon_0} \frac{p \cos\theta}{r^2}.
\]
Given \( P \) makes a \( 60^\circ \) angle with the x-axis, the angle between \( P \) and dipole axis (which is \( 45^\circ \)) is \( \theta = 15^\circ \).
Step 4: Substitute values.
\[
V = \frac{1}{4\pi\varepsilon_0} \frac{2\sqrt{2}qa}{r^2} \cos(15^\circ).
\]
Using \( \cos(15^\circ) = \frac{\sqrt{6} + \sqrt{2}}{4} \),
\[
V = \frac{1}{4\pi\varepsilon_0} \frac{qa}{2r^2}(\sqrt{3} - 1).
\]
Step 5: Final Answer.
Thus, the potential at \( P \) is \( \frac{1}{4\pi\varepsilon_0} \frac{qa}{2r^2}(\sqrt{3} - 1). \)