- Given a square with a diagonal of 80 cm, each side length is \( 40\sqrt{2} \) cm. Calculate the coordinates as \( A(0, 0) \), \( B(40\sqrt{2}, 0) \), \( C(40\sqrt{2}, 40\sqrt{2}) \), \( D(0, 40\sqrt{2}) \).
- Using the formula for the center of mass:
\[
x_{\text{cm}} = \frac{m_A \times 0 + m_B \times 40\sqrt{2} + m_C \times 40\sqrt{2} + m_D \times 0}{m_A + m_B + m_C + m_D} = 15\sqrt{2} \, \text{cm}
\]
\[
y_{\text{cm}} = \frac{m_A \times 0 + m_B \times 0 + m_C \times 40\sqrt{2} + m_D \times 40\sqrt{2}}{m_A + m_B + m_C + m_D} = 15\sqrt{2} \, \text{cm}
\]
- The distance from corner A is then:
\[
\sqrt{(15\sqrt{2})^2 + (15\sqrt{2})^2} = 30 \, \text{cm}
\]