Let g be a differentiable function such that $ \int_0^x g(t) dt = x - \int_0^x tg(t) dt $, $ x \ge 0 $ and let $ y = y(x) $ satisfy the differential equation $ \frac{dy}{dx} - y \tan x = 2(x+1) \sec x g(x) $, $ x \in \left[ 0, \frac{\pi}{2} \right) $. If $ y(0) = 0 $, then $ y\left( \frac{\pi}{3} \right) $ is equal to