Step 1: Convert the divisibility condition.
We want \(n^n\) to be divisible by \(500\). Factorize: \[ 500 = 2^2 \cdot 5^3. \] Let \(n = a+b\). For a prime \(p\), the exponent of \(p\) in \(n^n\) is: \[ v_p(n^n) = n \cdot v_p(n). \] Hence we require: \[ n \cdot v_2(n) \;\geq\; 2, \qquad n \cdot v_5(n) \;\geq\; 3. \]
Step 2: Find the least \(n\) satisfying both conditions.
From the \(5\)-condition: we need \(v_5(n)\geq 1 \;\Rightarrow\; 5 \mid n\). Then \(n \cdot v_5(n) \geq n \geq 5 \geq 3\), so every multiple of 5 works for the \(5\)-condition.
Check small multiples of 5:
Thus the least possible value is: \[ n = a+b = \boxed{10}. \]
Step 3: Minimize \(ab\) given \(a+b=10\), \(a,b \in \mathbb{Z}_{>0}\).
For a fixed positive sum, the product \(ab\) is minimized when the numbers are farthest apart. So the minimum occurs at \((a,b)=(1,9)\) or \((9,1)\): \[ ab = 1 \cdot 9 = \boxed{9}. \]
\[ \boxed{9} \]
A | B | C | D | Average |
---|---|---|---|---|
3 | 4 | 4 | ? | 4 |
3 | ? | 5 | ? | 4 |
? | 3 | 3 | ? | 4 |
? | ? | ? | ? | 4.25 |
4 | 4 | 4 | 4.25 |