Step 1: Use the Reaction Quotient \( Q_c \)
The reaction quotient \( Q_c \) is given by:
$$ Q_c = \frac{[B][C]}{[A]^2} $$
Substitute the given concentrations:
$$ Q_c = \frac{(2 \times 10^{-3})(2 \times 10^{-3})}{(2 \times 10^{-3})^2} = \frac{4 \times 10^{-6}}{4 \times 10^{-6}} = 1 $$
Step 2: Compare \( Q_c \) with \( K_c \)
The equilibrium constant \( K_c \) is given as \( 4 \times 10^{-3} \).
Since \( Q_c = 1 \) and \( K_c = 4 \times 10^{-3} \), we see that:
$$ Q_c > K_c $$
Step 3: Direction of the Reaction
When \( Q_c > K_c \), the reaction proceeds in the backward direction to achieve equilibrium.
Therefore, the reaction will shift to the left, and there is a tendency for the reaction to go in the backward direction.
Step 4: Conclusion
The correct answer is: Option (3): The reaction has a tendency to go in the backward direction.
In Carius method for estimation of halogens, 180 mg of an organic compound produced 143.5 mg of AgCl. The percentage composition of chlorine in the compound is ___________%. [Given: Molar mass in g mol\(^{-1}\) of Ag = 108, Cl = 35.5]
Consider the following reaction occurring in the blast furnace. \[ {Fe}_3{O}_4(s) + 4{CO}(g) \rightarrow 3{Fe}(l) + 4{CO}_2(g) \] ‘x’ kg of iron is produced when \(2.32 \times 10^3\) kg \(Fe_3O_4\) and \(2.8 \times 10^2 \) kg CO are brought together in the furnace.
The value of ‘x’ is __________ (nearest integer).
