Step 1: Given data:
\[
m = 800\,\text{kg}, \quad u = 10\,\text{m s}^{-1} \ (\text{downward}), \quad v = 0,
\]
\[
s = 25\,\text{m}, \quad g = 10\,\text{m s}^{-2}.
\]
Step 2: Using the equation of motion,
\[
v^2 = u^2 + 2as
\]
\[
0 = (10)^2 + 2a(25)
\Rightarrow a = -2\,\text{m s}^{-2}.
\]
Negative sign indicates acceleration is upward with magnitude \(2\,\text{m s}^{-2}\).
Step 3: Applying Newton’s second law (upward positive):
\[
T - mg = ma
\]
\[
T = m(g + a)
\]
Step 4: Substituting values,
\[
T = 800(10 + 2) = 9600\,\text{N}.
\]
Hence, the tension in the cable is
\[
\boxed{9600.00\,\text{N}}.
\]