Compute sample means.
$\bar{X} = \dfrac{12+14+16}{3} = 14, \quad \bar{Y} = \dfrac{14+16+17}{3} = \dfrac{47}{3} = 15.\overline{6}$.
Least-squares formulas.
\[
m = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}, \quad
c = \bar{Y} - m\bar{X}.
\]
Evaluate the sums.
\[
\begin{aligned}
\sum (X_i - \bar{X})(Y_i - \bar{Y}) &= (-2)(-1.\overline{6}) + 0(0.\overline{3}) + 2(1.\overline{3}) \\
&= 3.\overline{3} + 0 + 2.\overline{6} = 6, \\
\sum (X_i - \bar{X})^2 &= 4 + 0 + 4 = 8.
\end{aligned}
\]
Hence, $m = \dfrac{6}{8} = 0.75$, and
\[
c = \bar{Y} - m\bar{X} = 15.\overline{6} - 0.75 \times 14 = 15.\overline{6} - 10.5 = 5.166\overline{6} \approx 5.167.
\]
\[
\boxed{m = 0.750, \quad c = 5.167}
\]