Step 1: Fix the circular order.
From the figure, letters are placed around the “clock” in this clockwise order:
\[
O,\ P,\ Q,\ R,\ S,\ T,\ U,\ V,\ W,\ X,\ Y,\ Z \ (\text{then back to } O).
\]
Index these positions as \(1,2,\dots,12\) respectively, so \(O\equiv 1\), \(P\equiv 2\), \(\ldots\), \(Z\equiv 12\).
Step 2: Decode the pattern of the \(*\)-operation using \(O^{*}\).
Given:
\[
O^{*}=O,\ Q,\ S,\ Z,\ P,\ R,\ T.
\]
In index form (with \(O\equiv 1\)):
\[
1,\ 3,\ 5,\ 12,\ 2,\ 4,\ 6.
\]
Hence, relative to the starting index \(k\), the pattern of offsets is:
\[
k+\underbrace{(0,\ +2,\ +4,\ -1,\ +1,\ +3,\ +5)}_{\bmod\ 12}.
\]
(Here \(-1\) corresponds to \(+11 \bmod 12\).)
Step 3: Validate the pattern with \(X^{*}\).
For \(X\equiv 10\):
\[
10+(0,2,4,-1,1,3,5) \equiv 10,12,2,9,11,1,3,
\]
which maps to \(X,\ Z,\ P,\ W,\ Y,\ O,\ Q\), exactly the given \(X^{*}\).
So the offset pattern is confirmed.
Step 4: Apply the pattern to \(P\).
Since \(P\equiv 2\), compute:
\[
2+(0,2,4,-1,1,3,5) \equiv 2,4,6,1,3,5,7.
\]
Mapping these indices back to letters:
\[
2\to P,\ 4\to R,\ 6\to T,\ 1\to O,\ 3\to Q,\ 5\to S,\ 7\to U.
\]
Therefore,
\[
P^{*}=P,\ R,\ T,\ O,\ Q,\ S,\ U.
\]
Final Answer:
\[
\boxed{\text{Option (B)}}
\]