Step 1: Define signals.
Let input be \(R(s)\), output be \(Y(s)\).
From diagram:
- First summing node input = \(2R(s)\) (top branch), plus feedback from output of integrator.
- Output of first node enters integrator \(\frac{1}{s}\).
Step 2: First summing junction.
Let its output be \(X(s)\).
\[
X(s) = 2R(s) + Y(s)
\]
Step 3: Output of integrator.
\[
\frac{1}{s} X(s)
\]
This goes into second summing junction along with \(3R(s)\).
Step 4: Second summing junction.
\[
Y(s) = \frac{1}{s}X(s) + 3R(s)
\]
Step 5: Substitute \(X(s)\).
\[
Y(s) = \frac{1}{s}[2R(s) + Y(s)] + 3R(s)
\]
Step 6: Simplify.
Multiply through by \(s\):
\[
sY(s) = 2R(s) + Y(s) + 3sR(s)
\]
\[
sY(s) - Y(s) = (2 + 3s)R(s)
\]
\[
(s-1)Y(s) = (3s+2)R(s)
\]
Step 7: Transfer function.
\[
\frac{Y(s)}{R(s)} = \frac{3s+2}{s-1}
\]
Wait! Let's carefully check — did we misinterpret the feedback path?
From the diagram: The block "1" feeds forward from \(Y(s)\) back into the first summing junction.
So indeed:
\[
X(s) = 2R(s) + (1)\cdot Y(s)
\]
Yes, that's consistent.
After simplifying, we got \(\dfrac{3s+2}{s-1}\), which corresponds to option (B).
Final Answer: \[ \boxed{\frac{3s+2}{s-1}} \]
In the Wheatstone bridge shown below, the sensitivity of the bridge in terms of change in balancing voltage \( E \) for unit change in the resistance \( R \), in V/Ω, is __________ (round off to two decimal places).
The relationship between two variables \( x \) and \( y \) is given by \( x + py + q = 0 \) and is shown in the figure. Find the values of \( p \) and \( q \). Note: The figure shown is representative.