Question:

For real values of $ x $ and $ a $, if the expression $ \frac{x+a}{2x^2 - 3x + 1} $ assumes all real values, then:

Show Hint

To ensure a rational function assumes all real values, analyze the denominator’s zeros and numerator constraints.
Updated On: Apr 10, 2025
  • \( a-1 \) or \( a-\frac{1}{2} \)
  • \( -1a-\frac{1}{2} \)
  • \( \frac{1}{2}a1 \)
  • \( a\frac{1}{2} \) or \( a1 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Identify Restrictions The denominator \( 2x^2 - 3x + 1 \) should not be zero. Solve: \[ 2x^2 - 3x + 1 = 0 \] Using quadratic formula: \[ x = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4} \] \[ x = 1, \quad x = \frac{1}{2} \] Step 2: Condition for All Real Values For the function to assume all real values, \( a \) should lie in the range: \[ -1a-\frac{1}{2} \] Thus, the correct answer is \( -1a-\frac{1}{2} \).
Was this answer helpful?
0
0