Step 1: Identify Restrictions
The denominator \( 2x^2 - 3x + 1 \) should not be zero. Solve:
\[
2x^2 - 3x + 1 = 0
\]
Using quadratic formula:
\[
x = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4}
\]
\[
x = 1, \quad x = \frac{1}{2}
\]
Step 2: Condition for All Real Values
For the function to assume all real values, \( a \) should lie in the range:
\[
-1a-\frac{1}{2}
\]
Thus, the correct answer is \( -1a-\frac{1}{2} \).