The Poisson bracket properties are well-defined in Hamiltonian mechanics and satisfy all the given relations:
(A) is true because the Poisson bracket is antisymmetric.
- (B) is true because any quantity commutes with itself. - (D) follows from the Leibniz rule.
LIST I | LIST II | ||
---|---|---|---|
A. | d²y/dx² + 13y = 0 | I. ex(c1 + c2x) | |
B. | d²y/dx² + 4dy/dx + 5y = cosh 5x | II. e2x(c1 cos 3x + c2 sin 3x) | |
C. | d²y/dx² + dy/dx + y = cos²x | III. c1ex + c2e3x | |
D. | d²y/dx² - 4dy/dx + 3y = sin 3x cos 2x | IV. e-2x(c1 cos x + c2 sin x) |
Europium (Eu) resembles Calcium (Ca) in the following ways:
(A). Both are diamagnetic
(B). Insolubility of their sulphates and carbonates in water
(C). Solubility of these metals in liquid NH3
(D). Insolubility of their dichlorides in strong HCI
Choose the correct answer from the options given below: