The integral is:
\[f(x)=\int\frac{e^{x}}{\sqrt{4-e^{2x}}}dx\]
We simplify the denominator:
\[\sqrt{4-e^{2x}}=\sqrt{(2)^{2}-(e^{x})^{2}}\]
This suggests a substitution of the form \(e^{x}=2~sin~\theta\), where \(e^{2x}=4~sin^{2}\theta\). Then:
\[dx=\frac{2~cos~\theta}{e^{x}}d\theta=\frac{2~cos~\theta}{2~sin~\theta}d\theta=cot~\theta~d\theta\]
Substituting into the integral:
\[f(x)=\int\frac{2~sin~\theta}{\sqrt{4-4~sin^{2}\theta}}cot~\theta~d\theta\]
Using \(\sqrt{4-4~sin^{2}\theta}=2~cos~\theta\):
\[f(x)=\int\frac{2~sin~\theta}{2~cos~\theta}cot~\theta~d\theta=\int d\theta\]
Thus:
\[f(x)=\theta+C\]
Returning to \(e^{x}=2~sin~\theta\), we have \(sin~\theta=\frac{e^{x}}{2}\) so \(\theta=arcsin(\frac{e^{x}}{2})\). Hence:
\[f(x)=arcsin(\frac{e^{x}}{2})+C\]
To determine \(C\), we use the given point \((0,\frac{\pi}{2})\), which satisfies \(f(x)\):
\[f(0)=arcsin(\frac{e^{0}}{2})+C=arcsin(\frac{1}{2})+C\]
From trigonometry, \(arcsin(\frac{1}{2})=\frac{\pi}{6}\). Therefore:
\[f(0)=\frac{\pi}{6}+C=\frac{\pi}{2}\]
Solving for \(C\):
\[C=\frac{\pi}{2}-\frac{\pi}{6}=\frac{3\pi}{6}-\frac{\pi}{6}=\frac{\pi}{3}\]
Thus, the constant of integration is:
\[\frac{\pi}{3}\]
Fill in the blank with the correct option.
The teacher believed that the student’s sudden lack of interest in class was an ..........., as he had always been enthusiastic and attentive.