To find the gradient of the field \( T(x, y) \), we first compute the partial derivatives with respect to \( x \) and \( y \).
The gradient \( \nabla T(x, y) \) is given by:
\[
\nabla T(x, y) = \left( \frac{\partial T}{\partial x}, \frac{\partial T}{\partial y} \right)
\]
The partial derivatives are:
\[
\frac{\partial T}{\partial x} = \frac{1}{3} y(x + y) + \frac{1}{3} xy
\]
\[
\frac{\partial T}{\partial y} = \frac{1}{3} x(x + y) + \frac{1}{3} xy
\]
Now, evaluate the gradient at the point \( (1, 1) \):
\[
\frac{\partial T}{\partial x} = \frac{1}{3} \cdot 1(1 + 1) + \frac{1}{3} \cdot 1 \cdot 1 = \frac{1}{3} \cdot 2 + \frac{1}{3} = 1
\]
\[
\frac{\partial T}{\partial y} = \frac{1}{3} \cdot 1(1 + 1) + \frac{1}{3} \cdot 1 \cdot 1 = \frac{1}{3} \cdot 2 + \frac{1}{3} = 1
\]
The magnitude of the gradient is:
\[
|\nabla T| = \sqrt{1^2 + 1^2} = \sqrt{2} \approx 1.41
\]
Thus, the magnitude of the gradient is approximately 1.40 to 1.42.