Step 1: Define the break-even condition.
The break-even point occurs when \( R(x) = C(x) \). That is:
\[
4x = 10 + 2x + 3x^{2/3}
\]
Step 2: Define the function \( f(x) \) for the break-even condition.
We define the function \( f(x) = R(x) - C(x) \), so:
\[
f(x) = 4x - (10 + 2x + 3x^{2/3})
\]
Thus, we get:
\[
f(x) = 2x - 10 - 3x^{2/3}
\]
Step 3: Derivative of \( f(x) \).
Now, differentiate \( f(x) \) to get \( f'(x) \):
\[
f'(x) = 2 - 2x^{-1/3}
\]
Step 4: Apply the Newton-Raphson method.
Using the Newton-Raphson iteration formula:
\[
x_{{new}} = x_{{old}} - \frac{f(x_{{old}})}{f'(x_{{old}})}
\]
Starting with \( x_{{old}} = 8 \), we calculate:
\[
f(8) = 2(8) - 10 - 3(8^{2/3}) = 16 - 10 - 3(4) = 16 - 10 - 12 = -6
\]
\[
f'(8) = 2 - 2(8^{-1/3}) = 2 - 2 \times \frac{1}{2} = 1
\]
Thus, the first iteration gives:
\[
x_{{new}} = 8 - \frac{-6}{1} = 8 + 6 = 14
\]
Step 5: Conclusion.
Thus, the break-even point after the first iteration is \( \boxed{14} \).