We are given the ratio of the actual COP to the ideal COP of a reversible refrigerator, which is 0.8. The cooling capacity of the plant is 2.4 kW.
The COP of a refrigeration cycle is given by:
\[
\text{COP}_{\text{ideal}} = \frac{T_{\text{evaporator}}}{T_{\text{condenser}} - T_{\text{evaporator}}}.
\]
Converting the temperatures to Kelvin:
\[
T_{\text{evaporator}} = -30^\circ C + 273.15 = 243.15 \, \text{K}, T_{\text{condenser}} = 51^\circ C + 273.15 = 324.15 \, \text{K}.
\]
The ideal COP is:
\[
\text{COP}_{\text{ideal}} = \frac{243.15}{324.15 - 243.15} = \frac{243.15}{81} = 3.00.
\]
The actual COP is:
\[
\text{COP}_{\text{actual}} = 0.8 \times \text{COP}_{\text{ideal}} = 0.8 \times 3.00 = 2.4.
\]
The cooling capacity \(Q_{\text{cooling}}\) is given as 2.4 kW, so the power input is:
\[
\text{Power input} = \frac{Q_{\text{cooling}}}{\text{COP}_{\text{actual}}} = \frac{2.4}{2.4} = 1.33 \, \text{kW}.
\]
Final Answer: \text{(A) 1.33 kW}