Step 1: Write rate law form.
\[
\text{Rate} = k[A]^m[B]^n
\]
Step 2: Find order with respect to \(A\).
Doubling \([A]\) makes rate four times:
\[
2^m = 4 \Rightarrow m = 2
\]
Step 3: Find order with respect to \(B\).
Doubling \(B\) does not change rate:
\[
2^n = 1 \Rightarrow n = 0
\]
Step 4: Total order.
\[
\text{Order} = m+n = 2+0 = 2
\]
Step 5: Unit of rate constant for second order reaction.
Rate unit:
\[
mol\,L^{-1}\,s^{-1}
\]
For second order:
\[
k = \frac{\text{Rate}}{[A]^2}
= \frac{mol\,L^{-1}\,s^{-1}}{(mol\,L^{-1})^2}
= L\,mol^{-1}\,s^{-1}
\]
So unit is:
\[
s^{-1}\,mol^{-1}\,L
\]
Final Answer:
\[
\boxed{s^{-1}\,mol^{-1}\,L}
\]