Step 1: For \(Re_p < 1\) (laminar regime), the Kozeny–Carman/laminar term of the Ergun equation gives the pressure drop per unit length: \[ \frac{\Delta P}{L} = \frac{150(1-\varepsilon)^2}{\varepsilon^3}\,\frac{\mu\,u}{D_p^{\,2}} , \] where \(\varepsilon\) is bed voidage, \(\mu\) is fluid viscosity, and \(u\) is the superficial velocity.
Step 2: At minimum fluidization, the pressure drop balances the apparent weight of solids per unit bed volume: \[ \left.\frac{\Delta P}{L}\right|_{u=u_{mf}} = (\rho_s-\rho_f)(1-\varepsilon_{mf})\,g , \] which is independent of particle diameter \(D_p\) (material and bed properties fixed).
Step 3: Equating the two expressions: \[ (\rho_s-\rho_f)(1-\varepsilon_{mf})\,g = \frac{150(1-\varepsilon_{mf})^2}{\varepsilon_{mf}^3}\, \frac{\mu\,u_{mf}}{D_p^{\,2}} . \] Solving for \(u_{mf}\): \[ u_{mf} \;\propto\; D_p^{\,2}. \]
Final Answer: \[ \boxed{n = 2} \]