For a component fabricated from an alloy A with plane strain fracture toughness, \( K_{IC} = 50 \, {MPa m}^{1/2} \), fracture was observed to take place at a crack length of 0.4 mm at a tensile service stress of \( \sigma \). If the same component is instead fabricated from alloy B with \( K_{IC} = 75 \, {MPa m}^{1/2} \), the crack length at which a similar crack geometry will result in fracture (under identical tensile service stress of \( \sigma \)) is _________ mm (rounded off to one decimal place).
Radiative heat flux \( \dot{q} \) at a hot surface at a temperature \( T_s \) can be expressed as \[ \dot{q} = A f(T_s, T_\infty) (T_s - T_\infty) \] where \( A \) is a constant and \( T_\infty \) is the temperature of the surroundings (temperatures are expressed in K). The function \( f(T_s, T_\infty) \) is given by ______.
Match the steel plant related processes in Column I with the associated information in Column II.
Consider the phase diagram of a one-component system given below. \( V_{\alpha} \), \( V_{\beta} \), and \( V_{{Liquid}} \) are the molar volumes of \( \alpha \), \( \beta \), and liquid phases, respectively. Which one of the following statements is TRUE? Given: The change in molar enthalpies, \( \Delta H_{\alpha \to \beta} \) and \( \Delta H_{\beta \to {Liquid}} \), are positive.
For two continuous functions \( M(x, y) \) and \( N(x, y) \), the relation \( M dx + N dy = 0 \) describes an exact differential equation if
A linear regression model was fitted to a set of \( (x, y) \) data. The total sum of squares and sum of squares of error are 1200 and 120, respectively. The coefficient of determination \( R^2 \) of the fit is ......... (rounded off to one decimal place).