The cant deficiency \( C_d \) is given by the formula:
\[
C_d = \frac{v^2}{g \times R} - \left( \frac{v_{\text{equilibrium}}^2}{g \times R} \right),
\]
where:
- \( v = 100 \, \text{km/h} = 27.78 \, \text{m/s} \) is the maximum sanctioned speed,
- \( v_{\text{equilibrium}} = 80 \, \text{km/h} = 22.22 \, \text{m/s} \) is the equilibrium speed,
- \( g = 9.81 \, \text{m/s}^2 \) is the acceleration due to gravity,
- \( R = \frac{30.5}{\text{Degree of Curve}} \approx 1750 \, \text{mm} \).
Thus, substituting the values into the formula:
\[
C_d = \boxed{55 \, \text{mm}}.
\]