Let the rate law be given by: Rate = k[A]x[B]y, where x and y are the orders of the reaction with respect to A and B respectively.
From the given data:
Comparing the first and second rows (keeping [B] constant):
\[\frac{4\times10^{-3}}{2\times10^{-3}}=\frac{k[0.2]^{x}[0.1]^{y}}{k[0.1]^{x}[0.1]^{y}}\]
\[2=2^{x}\]
\[x=1\]
Comparing the second and third rows (keeping [A] constant):
\[\frac{1.6\times10^{-2}}{4\times10^{-3}}=\frac{k[0.2]^{x}[0.2]^{y}}{k[0.2]^{x}[0.1]^{y}}\]
\[4=2^{y}\]
\[y=2\]
Therefore, the order of the reaction with respect to A is 1, and with respect to B is 2.
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : The potential (V) at any axial point, at 2 m distance(r) from the centre of the dipole of dipole moment vector
\(\vec{P}\) of magnitude, 4 × 10-6 C m, is ± 9 × 103 V.
(Take \(\frac{1}{4\pi\epsilon_0}=9\times10^9\) SI units)
Reason R : \(V=±\frac{2P}{4\pi \epsilon_0r^2}\), where r is the distance of any axial point, situated at 2 m from the centre of the dipole.
In the light of the above statements, choose the correct answer from the options given below :
The output (Y) of the given logic gate is similar to the output of an/a :