Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) \(x^2 – 2x – 8\) (ii) \(4s^2 – 4s + 1\) (iii) \(6x^2 – 3 – 7x\) (iv) \(4u^2 + 8u\) (v) \( t^2 – 15\) (vi) \(3x^2 – x – 4\)
(i) \(x^2-2x-8\)
\(=(x-4)(x+2)\)
The value of \(x^2-2x-8 \) is zero when \(x - 4 = 0\) or \(x + 2 = 0\) ,
i.e., when \(x = 4\) or \(x = -2\)
Therefore, the zeroes of \(x^2-2x-8\) are \(4\) and \(-2.\)
Sum of zeroes \(= 4-2=2=\) \(\dfrac{-(-2)}{1} \)=\(-(\)Coefficient of \(x)\) Coefficient of \(x^2\)
Product of zeroes \(= 4x(-2)=-8= \dfrac{(-8)}{1} = \dfrac{\text{ Constant term}}{\text{Coefficient of }x^2}\)
(ii)\( 4s^2-4s+1\)
\(=(2s-1)^2\)
The value of \( 4s^2-4s+1\) is zero when \(2s - 1 = 0,\)
i.e.,\( s = \dfrac{1}{2} \) Therefore, the zeros of \(4s^2 - 4s + 1\) are \(\dfrac{1}{2}\) and \(\dfrac{1}{2} .\)
Therefore,
The sum of zeroes\( = \dfrac{1}{2} + \dfrac{1}{2} = \dfrac{1}{1}= \dfrac{-(-4)}{ 4}\) [Multiply by \(4\) in Numerator and Denominator]\(= \dfrac{-\text{(Coefficient of s)}}{\text{(Coefficient of } s^2)}\)
Product of zeroes \(= \dfrac{1}{2} \times \dfrac{1}{2} = \dfrac{1}{4} = \dfrac{\text{ Constant term}}{\text{Coefficient of }S^2}\)
(iii) \(6x^2-3-7x\)
\(= 6x^2-7x-3=(3x+1)(2x-3)\)
The value of \(6x^2 - 3 - 7x\) is zero when \(3x + 1 = 0\) or \(2x -3 = 0\), i.e.,
\(x = \dfrac{-1}{3}\) or \(x = \dfrac{3}{2} \)
Therefore, the zeroes of \(6 x^2 − 3 − 7 x\) are \(6x^2 -3 -3 -7x\) are \(\dfrac{-1}{3}\) and \(\dfrac{3}{2}\).
Sum of Zeros \(= \dfrac{-1}{3} + \dfrac{3}{2} = \dfrac{7}{6} = \dfrac{-(-7)}{6} = \dfrac{-(\text{Coefficient of } x)}{ \text{Coefficient of } x^2}\)
Product of zeroes \(= \dfrac{-1}{3} \times \dfrac{3}{2} = \dfrac{-1}{ 2} = \dfrac{-3}{6} = \dfrac{\text{ Constant term}}{\text{Coefficient of }x^2}\)
(iv)\( 4u^2 + 8u \)
\(= 4u^2 + 8u +0\)
\(=4u(u+2 )\)
The value of \(4u^2 + 8u\) is zero when \(4u = 0\) or \(u + 2 = 0\), i.e.,
\(u = 0\) or \(u = −2\)
Therefore, the zeroes of \(4u^2 + 8u\) are \(0\) and \(−2.\)
The sum of Zeros \(=0 + (-2) = -2 = \dfrac{-(8)}{4}\) [Multiply by \(4\) in Numerator and Denominator]\(= \dfrac{-\text{(Coefficient of u)}}{\text{(Coefficient of } u^2)}\)
Product of zeroes \(= 0 \times (-2) =0 = \dfrac{0}{4} = \)\(\dfrac{\text{ Constant term}}{\text{Coefficient of }u^2}\)
(v) \(t^2 -15\)
\(= t^2 -0.t -15\)
\(=(t-\sqrt{15}) (t + \sqrt {15})\)
The value of \(t^2 − 15\) is zero when \(t-\sqrt{15} = 0\) or \(t + \sqrt{15} =0\),
i.e., when\(t = \sqrt{15}\) or\(t = -\sqrt{15}\)
Therefore, the zeroes of \(t^2 − 15\) are\(\sqrt{15} \text{ and } -\sqrt{15}.\)
Sum of Zeros\(= \sqrt{15} + (-\sqrt{15}) = 0 =-0/1 = -\)\(\dfrac{-\text{(Coefficient of t)}}{\text{(Coefficient of } t^2)}\)
Product of zeroes \(= \sqrt{15} \times (-sqrt{15}) = -15 = -15/1=\) \(\dfrac{\text{ Constant term}}{\text{Coefficient of }t^2}\)
(vi) \(3x^2 − x − 4\)
\(= (3x-4)(x+1)\)
The value of \(3x^2 − x − 4\) is zero when \(3x − 4\) \(= 0\) or \(x + 1 = 0\),
i.e., when\(x= \dfrac{4}{3} \text{ or } x = −1\)
Therefore, the zeroes of \(3x^2 − x − 4\) are \(\dfrac{4}{3}\) and \(−1\).
Sum of Zeros \(= \dfrac{4}{3} + (-1) = \dfrac{1}{3} = \dfrac{-(-1)}{3} =\)\( \dfrac{-\text{(Coefficient of x)}}{\text{(Coefficient of } x^2)}\)
Product of zeroes \(= \dfrac{4}{3} \times (-1)\) = \(= \dfrac{4}{3}\)= \(\dfrac{\text{ Constant term}}{\text{Coefficient of }x^2}\)
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
डिजिटल इंडिया
संकेत बिंदु -
डिजिटल इंडिया क्या है
डिजिटल होने के लाभ
सरकार द्वारा उठाए गए कदम