Find the values of k so that the function f is continuous at the indicated point.
\(f(x)=\left\{\begin{matrix} kx+1, &if\, x\leq\pi \\ cos\,x,&if\,x>\pi \end{matrix}\right.\,at\,x=\pi\)
The given function is
\(f(x)=\left\{\begin{matrix} kx+1, &if\, x\leq\pi \\ cos\,x,&if\,x>\pi \end{matrix}\right.\)
The given function f is continuous at x=p, if f is defined at x=p and if the value of the f at x=p equals the limit of f at x=p.
It is evident that f is defined at x=p and f(π)=kπ+1
\(\lim_{x\rightarrow\pi^-}\) f(x)=\(\lim_{x\rightarrow\pi^+}\)f(x)=f(\(\pi\))
\(\Rightarrow\)\(\lim_{x\rightarrow\pi^-}\)(kx+1)=\(\lim_{x\rightarrow\pi^+}\)cosx=k\(\pi\)+1
\(\Rightarrow\)k\(\pi\)+1=cos\(\pi\)=k\(\pi\)+1
\(\Rightarrow\)k\(\pi\)+1=-1=k\(\pi\)+1
k=\(\frac{-2}{\pi}\)
Therefore, the required value of k is \(\frac{-2}{\pi}\).
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below: