Find the values of k so that the function f is continuous at the indicated point.
\(f(x)=\left\{\begin{matrix} \frac{k\,cos\,x}{\pi-2x}, &if\,x\neq\frac{\pi}{2} \\ 3,&if\,x=\frac{\pi}{2} \end{matrix}\right.at\, x=\frac{\pi}{2}\)
\(f(x)=\left\{\begin{matrix} \frac{k\,cos\,x}{\pi-2x}, &if\,x\neq\frac{\pi}{2} \\ 3,&if\,x=\frac{\pi}{2} \end{matrix}\right.\)
The given function f is continuous at x=\(\frac{\pi}{2}\) if f is defined at x=\(\frac{\pi}{2}\) and if the value of the f at x=\(\frac{\pi}{2}\) equals the limit of f at x=\(\frac{\pi}{2}\).
It is evident that f is defined at x=π/2 and f(π/2)=3
\(\lim_{x\rightarrow \frac{\pi}{2}}\) f(x)=\(\lim_{x\rightarrow \frac{\pi}{2}}\) \(\frac{k\,cos\,x}{\pi-2x}\)
put x=\(\frac{\pi}{2}\)+h
Then,x\(\rightarrow\)\(\frac{\pi}{2}\)\(\Rightarrow\)h\(\rightarrow\)0
∴limx\(\rightarrow\)\(\frac{\pi}{2}\) f(x)=\(\lim_{x\rightarrow \frac{\pi}{2}}\)\(\frac{k\,cos\,x}{\pi-2x}\)=\(\lim_{h\rightarrow 0}\)\(\frac{k\,cos(\frac{\pi}{2}+h)}{\pi-2(\frac{\pi}{2}+h)}\)
=k\(\lim_{x\rightarrow 0^-}\frac{sin\,h}{2h}\)=\(\frac{k}{2}\)\(\lim_{x\rightarrow 0^-}\frac{sin\,h}{2h}\)=\(\frac{k}{2.1}\)=\(\frac{k}{2}\)
∴\(\lim_{x\rightarrow \frac{\pi}{2}}\) f(x)=f(\(\frac{\pi}{2}\))
\(\Rightarrow\)\(\frac{k}{2}\)=3
\(\Rightarrow\)k=6
Therefore, the required value of k is 6.
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below: