Find the values of k so that the function f is continuous at the indicated point.
\(f(x)=\left\{\begin{matrix} \frac{k\,cos\,x}{\pi-2x}, &if\,x\neq\frac{\pi}{2} \\ 3,&if\,x=\frac{\pi}{2} \end{matrix}\right.at\, x=\frac{\pi}{2}\)
\(f(x)=\left\{\begin{matrix} \frac{k\,cos\,x}{\pi-2x}, &if\,x\neq\frac{\pi}{2} \\ 3,&if\,x=\frac{\pi}{2} \end{matrix}\right.\)
The given function f is continuous at x=\(\frac{\pi}{2}\) if f is defined at x=\(\frac{\pi}{2}\) and if the value of the f at x=\(\frac{\pi}{2}\) equals the limit of f at x=\(\frac{\pi}{2}\).
It is evident that f is defined at x=π/2 and f(π/2)=3
\(\lim_{x\rightarrow \frac{\pi}{2}}\) f(x)=\(\lim_{x\rightarrow \frac{\pi}{2}}\) \(\frac{k\,cos\,x}{\pi-2x}\)
put x=\(\frac{\pi}{2}\)+h
Then,x\(\rightarrow\)\(\frac{\pi}{2}\)\(\Rightarrow\)h\(\rightarrow\)0
∴limx\(\rightarrow\)\(\frac{\pi}{2}\) f(x)=\(\lim_{x\rightarrow \frac{\pi}{2}}\)\(\frac{k\,cos\,x}{\pi-2x}\)=\(\lim_{h\rightarrow 0}\)\(\frac{k\,cos(\frac{\pi}{2}+h)}{\pi-2(\frac{\pi}{2}+h)}\)
=k\(\lim_{x\rightarrow 0^-}\frac{sin\,h}{2h}\)=\(\frac{k}{2}\)\(\lim_{x\rightarrow 0^-}\frac{sin\,h}{2h}\)=\(\frac{k}{2.1}\)=\(\frac{k}{2}\)
∴\(\lim_{x\rightarrow \frac{\pi}{2}}\) f(x)=f(\(\frac{\pi}{2}\))
\(\Rightarrow\)\(\frac{k}{2}\)=3
\(\Rightarrow\)k=6
Therefore, the required value of k is 6.
The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} 2+x, & \text{if } x \geq 0 \\ 2-x, & \text{if } x \leq 0 \end{cases} \] Then function \( f(x) \) at \( x=0 \) is: