Find the value of \(tan^{-1}(tan \frac{7\pi}{6})\).
We know that tan−1(tan x) = x if x∈\([-\frac {\pi}{2}, \frac {\pi}{2}]\), which is the principal value branch of tan−1x.
Here,\(\frac {7\pi}{6}\) ∉ \([-\frac {\pi}{2}, \frac {\pi}{2}]\).
Now,tan-1(tan\(\frac {7\pi}{6}\)) can be written as:
tan-1(tan\(\frac {7\pi}{6}\)) = tan-1(tan 2\(\pi\)-\(\frac {5\pi}{6}\)) [tan(2\(\pi\)-x) = -tan x]
=tan-1(-tan\(\frac {5\pi}{6}\)) = tan-1(-tan\(\frac {5\pi}{6}\)) = tan-1(tan(-\(\frac {5\pi}{6}\))) = tan-1(tan(\(\pi\)-\(\frac {5\pi}{6}\)))
= tan-1(tan(\(\frac {\pi}{6}\))), where \(\frac {\pi}{6}\) ∈ \([-\frac {\pi}{2}, \frac {\pi}{2}]\)
Therefore tan-1(tan\(\frac {7\pi}{6}\)) = tan-1(tan(\(\frac {\pi}{6}\)) = \(\frac {\pi}{6}\)
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying: