Step 1: Use Maxwell’s displacement current concept.
Between capacitor plates, magnetic field is due to displacement current.
Using Ampere-Maxwell law:
\[
B(2\pi r) = \mu_0\varepsilon_0 \frac{d\Phi_E}{dt}
\]
Step 2: Electric flux through area.
\[
\Phi_E = EA = E(\pi r^2)
\Rightarrow \frac{d\Phi_E}{dt} = \pi r^2 \frac{dE}{dt}
\]
Step 3: Substitute in equation.
\[
B(2\pi r) = \mu_0\varepsilon_0 (\pi r^2)\frac{dE}{dt}
\Rightarrow B = \frac{\mu_0\varepsilon_0 r}{2}\frac{dE}{dt}
\]
Step 4: Insert values.
\[
\mu_0\varepsilon_0 = \frac{1}{c^2} = \frac{1}{(3\times 10^8)^2} = \frac{1}{9\times 10^{16}}
\]
\(r=1\,m\), \(\dfrac{dE}{dt}=10^{10}\).
\[
B = \frac{1}{2}\cdot\frac{1}{9\times 10^{16}}\cdot 1\cdot 10^{10}
= \frac{10^{10}}{18\times 10^{16}}
= \frac{1}{18}\times 10^{-6}
\approx 5.56\times 10^{-8}\,T
\]
Final Answer:
\[
\boxed{5.56\times 10^{-8}\,T}
\]