Find the value of \(cos^{-1}(cos\frac {13\pi}{6})\)
We know that cos−1(cos x) = x if x ∈ [0, \(\pi\)], which is the principal value branch of cos−1x.
Here, \(\frac {13\pi}{6}\) ∉ [0, \(\pi\)].
Now,cos-1(cos\(\frac {13\pi}{6}\)) can be written as:
cos-1(cos\(\frac {13\pi}{6}\)) = cos-1(cos(2\(\pi\)+\(\frac {\pi}{6}\))) = cos-1(cos \(\frac {\pi}{6}\)), where \(\frac {\pi}{6}\) ∈ [0, \(\pi\)].
Therefore cos-1(cos\(\frac {13\pi}{6}\)) = cos-1(cos \(\frac {\pi}{6}\)) = \(\frac {\pi}{6}\)
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying: