Question:

Find the value of \(cos^{-1}(cos\frac {13\pi}{6})\)

Updated On: Aug 28, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

We know that cos−1(cos x) = x if x ∈ [0, \(\pi\)], which is the principal value branch of cos−1x.
Here, \(\frac {13\pi}{6}\) ∉ [0, \(\pi\)]. 
Now,cos-1(cos\(\frac {13\pi}{6}\)) can be written as: 
cos-1(cos\(\frac {13\pi}{6}\)) = cos-1(cos(2\(\pi\)+\(\frac {\pi}{6}\))) = cos-1(cos \(\frac {\pi}{6}\)), where \(\frac {\pi}{6}\) ∈ [0, \(\pi\)]. 

Therefore cos-1(cos\(\frac {13\pi}{6}\)) = cos-1(cos \(\frac {\pi}{6}\)) = \(\frac {\pi}{6}\)

Was this answer helpful?
0
0