(i)\(729\) can be factorised as follows.
3 | 729 |
3 | 243 |
3 | 81 |
3 | 27 |
3 | 9 |
3 | 3 |
1 |
\(729 = \underline{3 × 3} ×\underline{ 3 × 3} × \underline{3 × 3}\)
\(\therefore \sqrt{729}=3\times3\times3=27\)
(ii) \(400\) can be factorised as follows.
2 | 400 |
2 | 200 |
2 | 100 |
2 | 50 |
5 | 25 |
5 | 5 |
1 |
\(400 = \underline{2 × 2} × \underline{2 × 2} × \underline{5 × 5}\)
\(\therefore \sqrt{400}=2\times2\times5=20\)
(iii) \(1764\) can be factorised as follows.
2 | 1764 |
2 | 882 |
3 | 441 |
3 | 147 |
7 | 49 |
7 | 7 |
1 |
1764 = 2 × 2 × 3 × 3 × 7 × 7
\(\therefore \sqrt{1764}=2\times3\times7=42\)
(iv) \(4096\) can be factorised as follows.
2 | 256 |
2 | 128 |
2 | 64 |
2 | 32 |
2 | 16 |
2 | 8 |
2 | 4 |
2 | 2 |
1 |
\(\sqrt{4096}= 2\times 2\times2\times2\times2\times2=64\)
(v)\( 7744\)
2 | 7744 |
2 | 3872 |
2 | 1936 |
2 | 968 |
2 | 484 |
2 | 242 |
2 | 121 |
11 | 11 |
11 | 1 |
\(\sqrt{7744} = 2 \times 2 \times 2 \times 11 = 88\)
(vi) \( 9604 \)
2 | 9604 |
2 | 4802 |
7 | 2401 |
7 | 343 |
7 | 49 |
7 | 7 |
1 |
\(\sqrt{9604} \\= 2 \times 7 \times 7 = 98\)
(vii)\( 5929\)
7 | 5929 |
7 | 847 |
11 | 121 |
11 | 11 |
1 |
\(\sqrt{5929} \\= 7 \times 11 = 77\)
(viii) \(9216\)
2 | 9216 |
2 | 4608 |
2 | 2304 |
2 | 1152 |
2 | 576 |
2 | 288 |
2 | 144 |
2 | 72 |
2 | 36 |
2 | 18 |
3 | 9 |
3 | 3 |
1 |
\(\sqrt{9216}\\= 2 \times 2 \times 2 \times 2 \times2 \times 3 = 96\)
(ix) \(529\)
23 | 529 |
23 | 23 |
1 |
\(\sqrt{529} = 23\)
(x) \(8100\)
2 | 8100 |
2 | 4050 |
3 | 2025 |
3 | 675 |
3 | 225 |
3 | 75 |
5 | 25 |
5 | 5 |
1 |
\(\sqrt{8100} \\= 2 \times 3 \times 3 \times 5 = 90 \)