Question:

Find the shortest distance between lines: \[ \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}, \quad \frac{x-2}{4} = \frac{y-4}{5} = \frac{z-5}{6} \]

Show Hint

To find the shortest distance between two skew lines, use the formula involving the cross product of their direction vectors.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The shortest distance between two skew lines can be found using the formula: \[ d = \frac{| (\overrightarrow{r_2} - \overrightarrow{r_1}) \cdot (\overrightarrow{a_1} \times \overrightarrow{a_2}) |}{|\overrightarrow{a_1} \times \overrightarrow{a_2}|} \] Where \( \overrightarrow{r_1} \) and \( \overrightarrow{r_2} \) are position vectors of any points on the lines, and \( \overrightarrow{a_1} \) and \( \overrightarrow{a_2} \) are direction vectors of the lines. Step 1: The direction vectors are: \[ \overrightarrow{a_1} = \langle 2, 3, 4 \rangle, \quad \overrightarrow{a_2} = \langle 4, 5, 6 \rangle \] Step 2: The vector between the two points is: \[ \overrightarrow{r_2} - \overrightarrow{r_1} = \langle 2-1, 4-2, 5-3 \rangle = \langle 1, 2, 2 \rangle \] Step 3: Find the cross product \( \overrightarrow{a_1} \times \overrightarrow{a_2} \): \[ \overrightarrow{a_1} \times \overrightarrow{a_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
2 & 3 & 4
4 & 5 & 6 \end{vmatrix} \] \[ = \hat{i}(3 \times 6 - 4 \times 5) - \hat{j}(2 \times 6 - 4 \times 4) + \hat{k}(2 \times 5 - 3 \times 4) \] \[ = \hat{i}(18 - 20) - \hat{j}(12 - 16) + \hat{k}(10 - 12) \] \[ = \langle -2, 4, -2 \rangle \] Step 4: Find the magnitude of the cross product: \[ |\overrightarrow{a_1} \times \overrightarrow{a_2}| = \sqrt{(-2)^2 + 4^2 + (-2)^2} = \sqrt{4 + 16 + 4} = \sqrt{24} = 2\sqrt{6} \] Step 5: Find the dot product \( (\overrightarrow{r_2} - \overrightarrow{r_1}) \cdot (\overrightarrow{a_1} \times \overrightarrow{a_2}) \): \[ (\overrightarrow{r_2} - \overrightarrow{r_1}) \cdot (\overrightarrow{a_1} \times \overrightarrow{a_2}) = \langle 1, 2, 2 \rangle \cdot \langle -2, 4, -2 \rangle \] \[ = 1(-2) + 2(4) + 2(-2) = -2 + 8 - 4 = 2 \] Step 6: Find the shortest distance: \[ d = \frac{|2|}{2\sqrt{6}} = \frac{2}{2\sqrt{6}} = \frac{1}{\sqrt{6}} \] Thus, the shortest distance between the lines is: \[ \boxed{\frac{1}{\sqrt{6}}} \]
Was this answer helpful?
0
0

Top Questions on Coordinate Geometry

View More Questions